Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37781592

RESUMO

Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level. While the protein co-expression network recapitulates major biological functions, differential expression patterns reveal proteomic signatures related to specific populations. Comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3.6%). Our results demonstrate that transcriptome and proteome are governed by distinct genetic bases, likely explained by protein turnover. It also highlights the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship. Highlights: At the level of individual genes, the abundance of transcripts and proteins is weakly correlated within a species ( ρ = 0.165). While the proteome is not imprinted by population structure, co-expression patterns recapitulate the cellular functional landscapeWild populations exhibit a higher abundance of respiration-related proteins compared to domesticated populationsLoci that influence protein abundance differ from those that impact transcript levels, likely because of protein turnover.

2.
Plant Biol (Stuttg) ; 24(6): 939-949, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35833328

RESUMO

Success or failure of plants to cope with freezing temperatures can critically influence plant distribution and adaptation to new habitats. Especially in alpine environments, frost is a likely major selective force driving adaptation. In Arabidopsis arenosa (L.) Lawalrée, alpine populations have evolved independently in different mountain ranges, enabling studying mechanisms of acclimation and adaptation to alpine environments. We tested for heritable, parallel differentiation in freezing resistance, cold acclimation potential and ice management strategies using eight alpine and eight foothill populations. Plants from three European mountain ranges (Niedere Tauern, Fagaraș and Tatra Mountains) were grown from seeds of tetraploid populations in four common gardens, together with diploid populations from the Tatra Mountains. Freezing resistance was assessed using controlled freezing treatments and measuring effective quantum yield of photosystem II, and ice management strategies by infrared video thermography and cryomicroscopy. The alpine ecotype had a higher cold acclimation potential than the foothill ecotype, whereby this differentiation was more pronounced in tetraploid than diploid populations. However, no ecotypic differentiation was found in one region (Fagaraș), where the ancient lineage had a different evolutionary history. Upon freezing, an ice lens within a lacuna between the palisade and spongy parenchyma tissues was formed by separation of leaf tissues, a mechanism not previously reported for herbaceous species. The dynamic adjustment of freezing resistance to temperature conditions may be particularly important in alpine environments characterized by large temperature fluctuations. Furthermore, the formation of an extracellular ice lens may be a useful strategy to avoid tissue damage during freezing.


Assuntos
Arabidopsis , Aclimatação , Arabidopsis/genética , Ecossistema , Congelamento , Gelo , Complexo de Proteína do Fotossistema II , Plantas , Tetraploidia
3.
Nat Biotechnol ; 40(3): 319-324, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34408314

RESUMO

Children have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates and a substantially lower risk for developing severe coronavirus disease 2019 compared with adults. However, the molecular mechanisms underlying protection in younger age groups remain unknown. Here we characterize the single-cell transcriptional landscape in the upper airways of SARS-CoV-2-negative (n = 18) and age-matched SARS-CoV-2-positive (n = 24) children and corresponding samples from adults (n = 44), covering an age range of 4 weeks to 77 years. Children displayed higher basal expression of relevant pattern recognition receptors such as MDA5 (IFIH1) and RIG-I (DDX58) in upper airway epithelial cells, macrophages and dendritic cells, resulting in stronger innate antiviral responses upon SARS-CoV-2 infection than in adults. We further detected distinct immune cell subpopulations including KLRC1 (NKG2A)+ cytotoxic T cells and a CD8+ T cell population with a memory phenotype occurring predominantly in children. Our study provides evidence that the airway immune cells of children are primed for virus sensing, resulting in a stronger early innate antiviral response to SARS-CoV-2 infection than in adults.


Assuntos
Brônquios/imunologia , Brônquios/virologia , COVID-19/imunologia , COVID-19/virologia , Imunidade Inata , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , Criança , Pré-Escolar , Proteína DEAD-box 58/metabolismo , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Humanos , Lactente , Recém-Nascido , Helicase IFIH1 Induzida por Interferon/metabolismo , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Receptores Imunológicos/metabolismo , Análise de Célula Única , Linfócitos T Citotóxicos/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...